ARO Report 93-2

PROCEEDINGS OF THE THIRTY-EIGHTH
CONFERENCE ON THE DESIGN OF
EXPERIMENTS IN ARMY RESEARCH
DEVELOPMENT AND TESTING

Approved for public release; distribution unlimited.
The findings in this report are not to be construed as an
official Department of the Army position, unless so
designated by other authorized documents.

Sponsored by
The Army Mathematics Steering Committee
on Behalf of

et §050966/

THE CHIEF OF RESEARCH, DEVELOPMENT AND
T D 8
At i\l T
prIE QUALTTY CPECTE

‘Pa

Revised 10 February 1992

Models for Assessing the Reliability of Computer Software
by

Nozer D. Singpurwalla and Simon P. Wilson

The George Washington University, Washington, D.C. 20052

GWU/IRRA/Serial TR-91/13
December 1991

Research Supported by

Contract N00014-85-K-202
Office of Naval Research

Grant DAAL03-87-K-0056
The Army Research Office

and

Grant AFOSR-F49620-92-J-0030
The Air Force Office of Scientific Research

DISTRIBUTION STATEMENT A

Approved for public release;
Distribution Unlimited

Models for Assessing the Reliability of Computer Software
by
Nozer D. Singpurwalla and Simon P. Wilson

The George Washington University, Washington, D.C. 20052

Abetract

A formal approach for evaluating the reliability of computer software is through probabilistic models

and statistical methods. This paper is an expository overview of the literature on the former. The

various probability models for software failure can be classified into two groups; the merits of these

groups are discussed and an example of their use in decision problems is given in some detail. The

direction of current and future research is contemplated.

Accesion For

NTIS CRA&I
DTIC TAB
0

Unannounced

Justification ﬂ ﬁ z

By
Distribution |

Availability Codes

. Avait and/or
Dist Special

Al

1. Introduction.

Having been developed over the last 20 years, software reliability is a relatively new area of research for
the statistics and the computer science communities. It arose because of interest in trying to predict the
reliability of software, particularly when its failure could be catastrophic. Obviously the software that
controls an aircraft carrier, a nuclear power station, a submarine or a life-support machine needs to be
very reliable, and statistical techniques will aid the computer scientist in deciding if such software has
sufficient reliability. The subject is also of commercial importance, as for example when decisions have

to be made concerning the release of software into the marketplace.

All software is subject to failure, due to the inevitable presence of errors (or bugs) in the code, so the
first aim of the subject has been to develop models that describe software failure. There are various
methods of specifying such failure models, and Section 2 discusses these in some detail. It is fair to say
that this model derivation has been the focus of research so far. Once a failure model has been specified
then it can be applied to problems such as the optimal time to debug software or deciding whether
software is ready for release. These applications have received less attention in the literature but are
becoming more prevelant. We will mention here that there is another approach to software reliability
that differs considerably from the statistical ideas presented here. This approach attempts to prove the
reliability, or correctness, of software by formal means of proof, just as one would prove a
mathematical theorem. This is an exercise in logic, albeit a rather complex one. It works well on small
programs, for example on a program that computes the factorial function, but becomes a forbidding
task for even moderately complex pieces of code. Nevertheless, the idea that software can be proved

correct is appealing. The approach is not discussed further.

This paper is divided into 5 further sections. Section 2 categorizes the different strategies that have
been used to model software failure. Section 3 reviews the historical development of the subject by
describing some of the more commonly used models, and Section 4 shows that many of these models
can be unified if one adopts a Bayesian position. Section 5 looks at applications of the material
developed in Section 3, and Section 6 concludes with a look at the current and future direction of the
subject. We assume that the reader has some familiarity with some basic reliability and probability
concepts; in particular it is important that he or she has knowledge of some common probability

distributions, statistical inference and decision making, Poisson processes and the concept of a failure

rate.

2. Model Categorization

All statistical software reliability models are probabilistic in nature. They attempt to specify the
probability of software failure in some manner. In looking through the literature, one observes that the

models developed so far can be broadly classified into two categories

Type I: Those which propose a probability model for times between successive failure of the

software, and
Type ": Those which propose a probability model for the number of failures up to a certain time.

Time is often taken to be CPU time, or the amount of time that the software is actually running, as
opposed to real time. In theory, specification via one of these two methods enables one to specify the
other. So a model that specifies time between failure will also be able to tell you the number of failures

in a given time, and vice versa. In practice, this may not be straightforward.

The first of these categories, modeling time between failure, is most commonly accomplished via a
specification of the failure rate of the software as it is running. When this is the case the model is to be
of Type I'l. The failure rate for the i-th time between failure is given, for i=1, 2, 3 ,... and a
probability model results. One distinctive feature of software is that its failure rate may decrease with
time, as more bugs are discovered and corrected. This contrasts with most mechanical systems which
will age over time and so have an increasing failure rate. An attempt to debug software may introduce
more bugs into it, thus tending to increase the failure rate, so the decreasing failure rate assumption is
somewhat idealized. However, most of the models of this type that are reviewed here have a decreasing

failure rate.

Another way to model time between failure is to define a stochastic relationship between successive
failure times. Models that are specified by this method are known as Type |‘2, and have the
advantage over Type I-1 in that they model the times between failure directly, and not via the abstract
concept of a failure rate. For example, let T;, Ty, ..., T}, ... be the length of times between successive
failure of the software. As a simple case, one could declare that T; ; = pT; + ¢, where p2>0is a
constant and ¢; is an error term (typically some random variable with mean 0). Then p<1 would

indicate decreasing times between failure (software reliability expected to become worse), p=1 would

indicate no expected change in software reliability whilst p>1 indicates increasing times between failure

(software reliability expected to improve). Those familiar with time series will recognize the
relationship in this example as an auto-regressive process of order 1; in general, one would say T; ;=

f(T;, Ty T + g for some function f.

The second of these categories, modeling the number of failures, uses a point process to count the
failures. Let M(t) be the number of failures of the software that are observed during time [0,t). M(t) is

modeled by a Poisson process, which is a stochastic process with the following properties:

i) M(0) = 0 and if s<t then M(s) < M(t). M(t) takes valuesin {0, 1,2,.. 3
ii) The number of failures that occur in disjoint time intervals are independent. So, for example, the
number of failures in the first 5 hours of use has no effect on the number of failures in the next 5
hours.
iii) The number of failures to time t is a Poisson random variable with mean u(t), for some non-
decreasing function p(t); that is to say:
P(M(t)=n) = (—ﬁ-‘—(lr,—))fl- cHY) n=0, 1, 2,...
The different models of this type have a different function u(t), which is called the mean value
function. The mean number of failures at time t is indeed u(t), as is the variance. The Poisson
process is chosen because in many ways it is the simplest point process yet it is flexible and has many
useful properties that can be exploited. This second approach has become increasingly popular in recent
years. M(t) can also be specified by its intensity function A(t), which is the derivative of p(t) with
respect to t; either of these functions completely specify a particular Poisson process. One disadvantage
of this approach is that it implies that there are conceptually an infinite number of bugs in the
program, which is obviously impossible for code of a finite length. Another disadvantage is more
subtle; the model implies a positive correlation between the number of failures in adjoining time

intervals, a situation which is not true since again the total number of bugs has to be finite.

Figure 1 is a flow-chart showing the above categorization of the statistical models.

No. of
failures

Poisson
processes

Software
Reliability

Models Faitlure rate

Auto-
regressive
processes

Figure 1. Categorization of Software Reliability Models.

3. Review of Some Software Reliability Models

This section introduces some of the more well known probability models for software reliability. There
are examples of models from each of the two main categories that were discussed in the previous
section. Since the main purpose of the review is to describe the ideas and assumptions behind the
models, technical details will be kept to a minimum in most cases. Those interested in the details of a

particular model are advised to reference the papers where they were originally presented.

Some common notation will be assumed throughout this section and is given below :

i) T, — i-th time between failure of the software [i.e.time between (i-1)th and i-th failure].
ii) T, (t) = failure rate for T;, the i-th time between failure, at time t.
iii) M(t) — number of failures of the software in the time interval [0, t) (a Poisson process).
iv) A(t) = intensity function of M(t).

v) u(t) = expected number of failures of software in time [0,t).

t
= I A(s) ds , since M(t) is a Poisson process.
0

10 models are presented. Model numbers 1 to 7 are of Type I-1, models 8 and 9 are of Type II and
model 10 is of type I-2. A common problem to all the models is the lack of data on which to test their
validity; data on software reliability is commercially sensitive and so statisticians in academia have
very little information on how software in the marketplace actually performs. For this reason it is

important that the assumptions made in deriving these models are carefully thought about.

1. The model of Jelinski & Moranda (1972).

This was the very first software reliability model that was proposed, and has formed the basis for many
models developed after. It is a Type I-1 model; it models times between failure by considering their
failure rates. Jelinski and Moranda reasoned as follows. Suppose that the total number of bugs in the
program is N, and suppose that each time the software fails, one bug is corrected. The failure rate of
the i-th time between failure, T;, is then assumed a constant proportional to N-i+1, which is the

number of bugs remaining in the program. In other words

rTi(t | N, A) = A (N-i+1), i=1,2,3,..,t>0, for some constant A.

There are some criticisms that one could make of the model. It assumes that each error contributes the
same amount A to the failure rate, whereas in reality different bugs will have different effects. It also
assumes that every time a fix is made, no new bugs are introduced; note [see Figure 2(i)] that the
successive failure rates are indeed decreasing. A model like this is sometimes refered to as a "de-

eutrophication model”, because the process of removing bugs from software is akin to the removal of

pollutants in rivers and lakes.
2. Bayesian Reliability Growth Model (Littlewood & Verall (1973)).

Like the Jelinski & Moranda model, the model proposed by Littlewood and Verall looked at times
between failure of the software. However, they did not develop the model by characterizing the failure
rate; rather they stated that the model should not be based on fault content (as Jelinski & Moranda
had assumed) and then declared that T, has an exponential distribution with scale A;, and that A; itself
has a gamma distribution with shape o and scale ¥(i), for some function ¥. Despite this it is still

considered to be a Type I-1 model.

Specifically :
(¢ | &) = A Nt £>0
. ¥(i)* | a-1 -F(D)A
nAi(,\|a,\1’(1))=(_I%_Aa1e (1) 23>0

¥(i) was supposed to describe the quality of the programmer and the programming task. As an
example, they chose ¥(i)=8y+5,i. One can show that this makes the failure rate of each T, decreasing
in t and that each time a bug is discovered and fixed there is a downward jump in the successive
failure rates; see Figure 2(ii). In fact
_ a
rTi(t | a, Bgy By) = ———ﬁo+,31i+t , for t > 0.
If §;>1 then the jumps in the failure rate decrease in i, if 8;<1 they increase whilst if ;=1 they

remain a constant. So if 3, differs from 1 then the fixing of each bug is making a different contribution

to the reduction in the failure rate of the software, an apparent advantage over the model by Jelinski &

Moranda. This model has received quite a lot of attention and has been the subject of various

modifications; see models 6 and 7 later in this section.

3. The De-eutrophication model of Moranda (1975).

Another (de-eutrophication) model of Moranda (1975) attempted to answer some of the criticisms of
the Jelinski & Moranda model, in particular the criticism concerning the equal effect that each bug in
the code has on the failure rate. He hypothesized that the fixing of bugs that cause early failures in the
system reduces the failure rate more than the fixing of bugs that occur later, because these early bugs
are more likely to be the bigger ones. With this in mind, he proposed that the failure rate should
remain constant for each T;, but that it should be made to decrease geometrically in i after each failure

i.e. for constants D and k
rp.(t | D, k) = D k! t >0, D>0 and 0<k<1.
1

Compared to the Jelinski & Moranda model, where the drop in failure rate after each failure was
always A, the drop in failure rate here after the i-th failure is D ki"'!(1-k) see Figure 2(iii). The

assumption of a perfect fix, with no introduction of new bugs during the fix, is retained.
4. Imperfect Debugging Model (Goel & Okumoto (1978)).

This model is another generalization of the Jelinski & Moranda model which attempts to address the
criticism that a perfect fix of a bug does not always occur. Goel & Okumoto’s Imperfect Debugging
Model is like the Jelinski & Moranda model, but assumes that there is a probability p, 0 <p <1, of
fixing a bug when it is encountered. This means that after i faults have been found, we expect i xp

faults to have been corrected, instead of i. Thus the failure rate of T; is
rTi(t ! Na Aa P) =A (N-p(i-l))

When p=1 we get the Jelinski & Moranda model.

5. A model by Schick & Wolverton (1978).

This is yet another Type I model, and this time the failure rate is assumed proportional to the number

of bugs remaining in the system and the time elapsed since the last failure. Thus
rTi(t | N, A) = A (N-i+1)t, t>0

This model differs from models 1-4 in that the failure rate does not decrease monotonically.
Immediately after the i-th failure, the failure rate drops to 0, and then increases linearly with slope

(N—i) until the (i+1)th failure; see Figure 2(iv).
6. Bayesian Differential Debugging Model (Littlewood (1980)).

This model can be considered as an elaboration of model 2 proposed by Littlewood & Verall. Recall
that in model 2 it was assumed that A;, the failure rate of the i-th time between failures, was declared
to have a gamma distribution. In this new model Littlewood supposed that there were N bugs in the
system (a return to the bug counting phenomenon), and then proposed that A; be specified as a
function of the remaining bugs. In particular, he stated A; = ¢, + ¢, + o + Oy where ¢; were
independent and identically distributed gamma random variables with shape a and scale B. This
implied that A; would have a gamma distribution with shape a(N-i) and scale 3. In other respects its

assumptions are identical to the original Littlewood/Verall model.
7. Bayes Empirical Bayes or Hierarchical Model (Mazzuchi & Soyer (1988)).

In 1988 Mazzuchi and Soyer proposed a Bayes Empirical Bayes or Hierarchical extension to the
Littlewood & Verall model (model 2). As with the original model, they assumed T; to be exponentially
distributed with scale A;. Then they proposed two ideas for describing A;, here called model A and

model B.

Model A :
Still assume that A, is described by a gamma distribution, but with parameters a and B. Now assume
that o and J are independent and that they themselves are described by probability distributions; a by

a uniform and 3 by another gamma. In other words :

a
Iy (o, 8) = g 2T e A20

majv) = %, 0<a<v
(B | a, b)=r—?:—)ﬂ“ b, B>0, a>0, b>0.

Model B:

Assume that A; is described exactly as in Littlewood and Verall i.e.

Iy O) = (- 201 YO, A20

and that ¥(i)=B,+8,i, except now place probability distributions on a, B, and §, as follows:

(e | w) = al,-, 0<a<w
(B | 3, b, By) = -rh(:;; (Bo+B)™? ePBotBr) | Bo > —By, a>0, b>0
8, B, 20, c>0, d>0.

(8, | ¢, d) = f%—) ple

So a is described by a uniform distribution, 8, by a shifted gamma and (3, by another gamma, and
there is dependence between B, and §;. By assuming B, to be degenerate at 0, model A is obtained
from model B. The authors were able to find an approximation to the expectation of T, given that
T =ty To=tg ooy T=ty, and so use their model to predict future reliability of the software in light of

the previous failure times.
8. Time-dependent Error Detection Model (Goel & Okomuto (1979)).

This is the first Type II model that we will consider. It assumes that M(t), the number of failures of

the software in time [0,t), is described by a Poisson process with intensity function given by
A(t) = ab e

where a is the total expected number of bugs in the system and b is the fault detection rate; see Figure

2(v). Thus the expected number of failures to time t is :

t
p(t) = J'ab e ds = a (1 —e®).
0

The function p(t) completely specifies a particular Poisson process, and the distribution of M(t) is

given by the well known formula

P(M(t)=n) = Q’i;,)ﬁ eHt) n=0,1,2,...

Experience has shown that often the rate of faults in software increases initially before eventually

decreasing, and so in Goel (1983) the model was modified to account for this by letting
A(t) = abe to1 &P
where a is still the total number of bugs and b and ¢ describe the quality of testing.
9. Logarithmic Poisson Execution Time Model (Musa and Okumoto (1984)).
The Logarithmic Poisson Ezecution Time Model of Musa and Okomuto is one of the more popular
software failure models of recent years. It is a type II model, but the model is not derived by directly

assuming some intensity function A(t), as was the case with model 8 of Goel & Okumoto. Here A(t) is

expressed in terms of p(t), the expected number of failures in time [0,t), via the relationship
Alt) = Ag e—Gy(t).

Put simply, this relationship encapsulates the belief that the intensity (or rate) of failures at time t
decreases exponentially with the number of failures experienced, and so bugs fixed, up to time t. The
fixing of earlier failures will reduce A(t) more than the fixing of later ones. Since we are modeling the

number of failures by a Poisson process, then we have another relationship between A(t) and p(t),

namely
t
ult) = [,\(s) ds .
0

Using these two relationships between A(t) and p(t), there is a unique solution for the two functions:

Ao

A =xg1

u(t) = 3 In(gft+1)

10

Figure 2 (vi) shows a plot of A(t) versus t; it is similar to the plot of figure 2 (v) except that the tail is

thicker.

It now follows from the above that by using P(M(t)=n) = (u(t))ne"u(t)/n! we can say

(In(Ag0t+1))"

n=0,1,2...
i (Agor+1)tY

P(M(t)=n) =

3
x n!

As a final remark, we mention that in their paper the authors go into some detail on estimation of Ay

and 0 by maximum likelihood methods; however, one of the likelihoods appears to be incorrect.

10. Random Coefficient Autoregressive process model (Singpurwalla & Soyer (1985)).

This is a Type I-2 model, that is one that does not consider the failure rate of times between failure.
Instead it assumes that there is some pattern between successive failure times and that this pattern can
be described by a functional relationship between them. The authors declare this relationship to be of
the form
8. .
T, =T,) i=1,2,3,...
where T is the time to the first failure and 6; is some unknown coefficient. If all the 6,’s are bigger
than 1 then we expect successive lifelengths to increase, and if all the ;s are smaller than 1 we expect

successive lifelengths to decrease.

Uncertainty in the above relationship is expressed via an error term 6;, so that

The authors then make the following assumptions, which greatly facilitate the analysis of this model.
They assume the T{’s to be lognormally distributed, that is to say that log T,’s have a normal
distribution, and that they are all scaled so that T; > 1. The §;’s are also assumed to be lognormal,
with median 1 and variance 012 (the conventional notation is A(l,alz)). Then by taking logs on the

relationship above they obtain

11

log T; = 6; log T;_; + log §;
=6, log T, ; +¢ ,say.

Since the T,’s and the §;’s are lognormal so the log T;’s and the ¢’s (= log 6;’s) will be normally
distributed, and in particular ¢ has mean 0 and some variance o? (the conventional notation is
N(0,0?)). The log-lifelengths therefore form what is known as an autoregressive process of order 1 with

random coefficients ;. There is an extensive literature on such processes which can now be used on this

model.

All that remains to do is to specify 0;, and the authors consider several alternative models. For

example, one could make 6, itself an autoregressive process :
8, = af; 1+ w; , where w; is N(0, W;) with W; known.

When a is known, the expressions for log T, and §; together form a Kalman filler model, on which
there is also an extensive literature. When « is not known the solution is via an adaptive Kalman filter
algorithm for which the above authors propose an approach. As an alternative to the above, one could
place a two stage distribution on 6;, and the authors considered the idea of 6; being N(2, 022), with A
also a normal random variable having mean mg and variance 302. In this latter case one can employ
standard hierarchical Bayesian inference techniques to predict future reliability in the light of previous

failure data.

Figure 2 shows the various failure rates for models 1, 2, 3 and 5, and the intensity function for models

8 and 9.

Mt)

[ra
1 1

14

I

t
Figure 2 (i) The failure rate of the model of Jelinski and Moranda

Mt)

—

1 1 no ¢

Figure 2 (ii) The failure rate of the model of Littlewood and Verall

Mt) sl

12

n

T 14

I

t
Figure 2 (iii) The failure rate of the model of Moranda

13

r(t)

1 12 K T4 t

Figure 2 (iv) The failure rate of the model of Schick and Wolverton

Lanbda(t)

t

Figure 2 (v) The intensity function for the model of Goel and Okumoto
Lanbda(t)

Figure 2 (vi) The intensity function for the model of Musa and Okumoto

14

4. Model Unification.

By adopting a Bayesian approach, it turns out that one can unify models 1, 2 and 8 - the models by
Jelinski & Moranda, Littlewood & Verrall and Goel & Okomuto respectively - under a general
framework. Observe that this also provides a link between the two types of models, since models 1 and

2 are of type I whilst model 8 is of type 1L

We begin by recalling the first model, that by Jelinski & Moranda. Each T, is assumed to have a
constant failure rate A(N-i+1). It is well known that this implies each T, must therefore be
exponentially distributed with mean (A(N-i+1))}. Now assume that A and/or N is unknown; in true

Bayesian fashion prior distributions are placed upon them.
To obtain model 8 by Goel & Okomuto, we let A be degenerate at X and N have a Poisson distribution

with mean 8. One can calculate M(t) using the T}’s as defined by Jelinski & Moranda, and then by

averaging out over N one finds that M(t) is indeed a Poisson process with mean :
u(t) = 6 (1)
which is the form of p(t) for Goel & Okomuto’s model.

One can also obtain model 2 by assuming N to be degenerate and A to have a gamma distribution.

The derivations which lead to the above are complex; readers are referred to Langberg and
Singpurwalla (1985) for the details.

5. An application : optimal testing of software.

The failure models that have been reviewed in the preceding sections can be used for more than
inference or the prediction of software failure. They can also be applied in the framework of decision
theory to solve decision problems. An important example of such a problem is the optimal time to test
software before releasing it. This involves the balancing of the costs of testing and the risk of software
obsolesence with the cost of in-service failure, should a bug not be corrected during the testing period.

The following is taken from Singpurwalla (1991), in which a strongly Bayesian approach is taken.

To implement a decision theoretic procedure requires two key ingredients. The first is a probability
model, and here we take a generalization of the Jelinski & Moranda model. The second is a
consideration of the costs and benefits, or utilities, associated with a particular decision i.e the costs of
testing, the benefits and costs of fixing a bug etc. Decision theory states that the optimal decision (in

this case time of test) is that which mazimizes ezpected utility.

If the software is to be tested for some time, say T units, and then released the problem is to find a T
that maximizes expected utility. This is called single stage testing. There is a more complex, yet
realistic, scenario called two stage testing. Here the software is tested for T units of time, and then
depending on how many failures M(T) were observed during that test, a decision is made on whether to
continue testing for a further T* units. The problem here is to find the optimal T and T*, with T* to
be determined before M(T) is observed. Finally there is a third testing scenario, namely sequential
testing. Here T* is determined after M(T) is observed; this procedure can continue for several stages,
with T** being determined after M(T*) is observed and so on. Here we consider the case of single stage

testing. Figure 3 is a graph of the decision process associated with single stage testing.

® B ® .
Ha;g%u ; H(m;m m; i?ﬁm U(T.M(T).j)

Figure 3 Decision process for single-stage testing

16

The model chosen in this paper is an extension to Jelinski & Moranda’s model. We have

Ep.(t | N, A) = A(N=it1) e ALY t>0
1
In the previous section we placed prior distributions on one of N or A. Now we place priors on both the

parameters, and say That N has a Poisson distribution with mean 8, A has a gamma distribution with

scale y and shape o and that N and A are independent.

We now turn to the choice of utility function. The following assumptions are made :
i) The utility of a program that encounters j bugs during its operation is a;+ a, e 23,
ii) The cost of fixing a bug is some constant C,.

iii) Let f(T) be the cost of testing and lost opportunity to time t; here we say f(T) = dT*

Note from i) that the utility of a bug-free program is a;+ a,, and the utility of a program with a very
large number of bugs is near a,, so that typically a; is a large negative number (because there is a
great loss associated with software that is constantly failing in the marketplace) and a,>0. Combining
these assumptions gives us the utility of a program that is tested for T units of time, during which

M(T) bugs are found and corrected, and then released where j bugs are encountered by the customer as

QU(T, M(T), §) = ¢PTx {a,+ a, € 2F — C;M(T) — dT%)

bT is some devaluating factor.

where €
Now the two parts of the decision process - the probability model and the utility function - are brought
together. We wish to find the time T that maximizes expected utility. In other words find T such that
E(U(T, M(T), j)) is a maximum, where we take expectation, using our failure model, with respect to
M(T) and j. This maximization is quite complex, and must be done numerically via computer. The
details are found in the paper, but the end result is best displayed as a graph of time against expected
utility (figure 4); in this case one can see that the time one should test the software for is about 3.5

units.

17

Expected utility

92,89

92,183

91,478

90.797

90.843

89,332

1,38 3,38

Figure 4 Time of testing versus expected utility for the model in Section 5

time

6. Conclusion.

This paper has attempted to review the main methods, and some of the more well known models, that
have been used by the statistics community in the area of software reliability. The first models were
almost always based on looking at the failure rate of the software; later on the idea of modeling
number of failures by a Poisson process was used and then most recently auto-regressive processes have
been suggested as an alternative to the failure rate method. Application of the failure models, such as

to the optimal testing decision problem, is another important aspect to the field.

Earlier it was pointed out that there is almost no data on the reliability of commercial software, due to
the sensitive nature of that information. A possible method of overcoming this problem would be to
have more interaction between the statistics and computer science communities. In the future, such
interaction seems essential if models are to become more realistic and useful, and it is perhaps

surprising that there are so few links between the two groups today.

There still remains much to be researched in this field. In the case of optimal testing, plans for two-
stage and sequential testing need to be developed, whilst the verification of current and future models
is likely to remain a problem. Nevertheless, because of the increasing presence of computers in all
aspects of our daily lives, the topic of software reliability can only become more important in the

future.

Acknowledgements

This report is based on a series of lectures given by the first author during the Fall of 1991 when he
was the C. C. Garvin Endowed Visiting Professor of Computer Science and of Statistics at the Virginia
Polytechnic Institute and State University. The comments of Professors 1. J. Good, R. Krutchkoff, P.
Palletas and K. Hinkelmann, and of students in the class, are gratefully acknowledged. Also
acknowledged are the inputs of Ms. Sylvia Campodonico and the assistance of Mr. Jingxian Chen.

References

Goel, A.L. (1983) A Guidebook for Software Reliability Assessment. Technical Report RADC-TR-83-
176

Goel, A.L. & Okomuto, K. (1978) An Analysis of Recurrent Software Failures on a Real-time Control
System. Proc. ACM Annu. Tech. Conf., ACM, Washington D.C., pp. 496-500

Goel, A.L. & Okomuto, K. (1979) Time-dependent Error Detection Rate Model for Software Reliability
and other Performance Measures. IEEE Transactions on Reliability, vol. R-28, pp. 206-211

Jelinski, Z. & Moranda, P. (1972) Software Reliability Research. Statistical Computer Performance
Evaluation, W. Freiberger editor. New York: Academic, pp. 465-484

Landberg, N. and Singpurwalla, N.D. (1985) A Unification of Some Software Reliability Models. STAM
J. Sci. Stat. Comput., vol. 6, no. 3, pp.781-790

Littlewood. B. (1980) A Bayesian Differential Debugging Model for Software Reliability. Proceedings
of IEEE COMPSAC

Littlewood, B. & Verall, J.L. (1973) A Bayesian Reliability Growth Model for Computer Software.
Applied Statistician, vol. 22, pp. 332-346

Mazzuchi & Soyer (1988) A Bayes Empirical-Bayes Model for Software Reliability. IEEE Transactions
on Reliability, vol. 37, no. 2, pp. 248-254

Moranda, P.B. (1975) Prediction of Software Reliability and its Applications. Proceedings of the
Annual Reliability and Maintainability Sympesium, Washington D.C., pp. 327-332

Musa, J.D. & Okumoto, K. (1984) A Logarithmic Poisson Execution Time Model for Software
Reliability Measurement. Proceedings of the 7th International Conference on Software

Engineering, Orlando, Florida, pp. 230-237

21

Schick, G.J. & Wolverton, R.W. (1978) Assessment of Software Reliability. Proc. Oper. Res., Physica-
Verlag, Wirzberg-Wien, pp. 395-422

Singpurwalla, N.D. (1991) Determining an Optimal Time for Testing and Debugging Software. IEEE

Transactions on Software Engineering, vol. 17, no. 4, pp. 313-319

Singpurwalla, N.D. and Soyer, R. (1985) Assessing (Software) Reliability Growth Using a Random

Coefficient Autoregressive Process and its Ramifications. IEEE Transactions on Software

Engineering, vol. SE-11, no. 12, pp. 1456-1464

22

